Conformational change of single-stranded RNAs induced by liposome binding

نویسندگان

  • Keishi Suga
  • Tomoyuki Tanabe
  • Hibiki Tomita
  • Toshinori Shimanouchi
  • Hiroshi Umakoshi
چکیده

The interaction between single-stranded RNAs and liposomes was studied using UV, Fourier Transform Infrared spectroscopy (FTIR) and Circular Dichroism spectroscopy (CD). The effect of the surface characteristics of liposomes, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modified with cholesterol (Ch) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), on the liposome-RNA interaction was investigated. The fluorescence of 6-(p-toluidino)naphthalene-2-sulfonate (TNS) embedded in the liposome surface (ε = 30-40) was decreased in the presence of tRNA, suggesting that single-stranded tRNA could bind onto the liposome. The dehydration of -PO₂⁻-, guanine (G) and cytosine (C) of tRNA molecules in the presence of liposomes suggested both an electrostatic interaction (phosphate backbone of tRNA and trimethylammonium group of POPC, DOTAP) and a hydrophobic interaction (guanine or cytosine of tRNA and aliphatic tail of lipid). The tRNA conformation on the liposome was determined by CD spectroscopy. POPC/Ch (70/30) maintained tRNA conformation without any denaturation, while POPC/DOTAP(70/30) drastically denatured it. The mRNA translation was evaluated in an Escherichia coli cell-free translation system. POPC/Ch(70/30) enhanced expression of green fluorescent protein (GFP) (116%) while POPC/DOTAP(70/30) inhibited (37%), suggesting that the conformation of RNAs was closely related to the translation efficiency. Therefore, single-stranded RNAs could bind to liposomal membranes through electrostatic and hydrophobic attraction, after which conformational changes were induced depending on the liposome characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-stranded RNA facilitates nucleocapsid: APOBEC3G complex formation.

Binding of APOBEC3G to the nucleocapsid (NC) domain of the human immunodeficiency virus (HIV) Gag polyprotein may represent a critical early step in the selective packaging of this antiretroviral factor into HIV virions. Previously, we and others have reported that this interaction is mediated by RNA. Here, we demonstrate that RNA binding by APOBEC3G is key for initiation of APOBEC3G:NC complex...

متن کامل

Site size of cooperative single-stranded RNA binding by poliovirus RNA-dependent RNA polymerase.

The poliovirus RNA-dependent RNA polymerase binds cooperatively to single-stranded RNA. We have determined the minimal RNA-binding site size of the poliovirus polymerase using binding titration with oligonucleotides of increasing length. A dramatic increase in affinity was observed when the length of the oligo(U) increased from 8 to 10 nucleotides (nt), arguing that the minimal size of RNA for ...

متن کامل

Cd2+-induced conformational change of a synthetic metallopeptide: slow metal binding followed by a slower conformational change.

A two-stranded alpha-helical coiled coil was prepared having a Cys 4 metal-binding site within its hydrophobic interior. The addition of Cd2+ results in the incorporation of 2 equiv of metal ion, which is accompanied by a conformational change of the peptide, as observed by circular dichroism (CD) spectroscopy. Isothermal titration calorimetry (ITC) shows that the addition of Cd2+ is accompanie...

متن کامل

Modulation of replication protein A function by its hyperphosphorylation-induced conformational change involving DNA binding domain B.

Human replication protein A (RPA), composed of RPA70, RPA32, and RPA14 subunits, undergoes hyperphosphorylation in cells in response to DNA damage. Hyperphosphorylation that occurs predominately in the N-terminal region of RPA32 is believed to play a role in modulating the cellular activities of RPA essential for almost all DNA metabolic pathways. To understand how the hyperphosphorylation modu...

متن کامل

Elucidating the mechanism of DNA-dependent ATP hydrolysis mediated by DNA-dependent ATPase A, a member of the SWI2/SNF2 protein family

The active DNA-dependent ATPase A domain (ADAAD), a member of the SWI2/SNF2 family, has been shown to bind DNA in a structure-specific manner, recognizing DNA molecules possessing double-stranded to single-stranded transition regions leading to ATP hydrolysis. Extending these studies we have delineated the structural requirements of the DNA effector for ADAAD and have shown that the single-stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011